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Abstract. By means of perturbative renormalization approach we study the effect of relevant umklapp
process on dimensional crossover caused by interladder one particle hopping t⊥ in weakly coupled two-leg
Hubbard ladders with a half filled-band. We found that a crossover takes place at a finite value t⊥c which
increases as the amplitude of umklapp process increases. For t⊥ < t⊥c the system undergoes a phase
transition to the spin density wave phase (SDW) via the two particle hopping process, while for t⊥ > t⊥c

the system undergoes a crossover to the two dimensional Fermi liquid phase via one particle hopping
process.

PACS. 64.60.-i General studies of phase transitions – 71.27.+a Strongly correlated electron systems; heavy
fermions – 74.25.Dw Superconductivity phase diagrams – 74.72.-h High-Tc compounds

1 Introduction

With the view to understand the behavior of high Tc su-
perconductors, great attention is devoted to low dimen-
sional strongly correlated quantum systems in particular
spin ladder compounds especially after the experimental
discovery of superconductivity in a doped spin ladder ma-
terial under pressure [1]. These compounds are consid-
ered as an intermediate situation between one and two
dimensional systems [2]. Even-leg ladders which are spin
liquids exhibit as high-Tc superconductors a spin gap in
their excitation spectrum and a transition from insulator
to metal upon doping. The study of doping and filling ef-
fects in such materials is promising in this regard. The
single half-filled Hubbard ladder was already studied [3]
and are found to exhibit a Mott insulating phase.

In this paper we will be interested in Hubbard ladders
with a half filled band which represents a special case of
filling and may generate umklapp scattering within this
band. The ladders are under pressure and are weakly cou-
pled via one particle hopping process. The effect of umk-
lapp process has been studied in the case of half-filled
chain [4]. Using perturbative renormalization group the-
ory (PRG) [5,6], we will discuss the effect of relevant umk-
lapp process on the phase diagram. We will show that the
isolated ladder scale to a quasi-one dimensional insulator
where a Mott gap opens in the charge excitation spectrum
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and consequently the spin density wave correlation (SDW)
becomes the most dominant. Such behavior is reminiscent
of organic conductors with half-filled band [7]. We will
study the competition between umklapp scattering and
one particle hopping process. Such study has revealed the
existence of deconfinement-confinement transition in the
case of two coupled half-filled chains [8].

The setup of this paper is as follows: in Section 2 we
present the model giving our choice of the coupling con-
stants. The scaling equations for two particle scattering
are derived and solved numerically in Section 3. In Sec-
tion 4 we study the one and two particle hopping processes
and depict the phase diagram. Finally, Section 5 is devoted
to the conclusion.

2 The model

We start with the noninteracting two chains Hamiltonian

H0 = −t
∑

i,j=i+1

∑
σ=±1

(
c+i,1,σcj,1,σ + c+i,2,σcj,2,σ +H.C.

)
− t′

∑
i

∑
σ=±1

(
c+i,1,σci,2,σ +H.C.

)
, (1)

c+i,1,σ(c+i,2,σ) creates an electron with spin σ at site i on
chain 1(2).

There are two bands labeled A (Antibonding) and B
(Bonding) which can be linearized in the form

εmk = ±vmF (k ∓ kmF ) , m = A, B (2)
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within some cutoff range k0 [9,10], where vmF = 2t sinkmF .
Consequently εmk run over a range characterized by the
bandwidth cutoff E0 = 2k0vF where vF is the Fermi ve-
locity in absence of t′ (see Fig. 1 of Ref. [9] and Fig. 3a
of Ref. [6]). We assume that vmF = vF to avoid additional
renormalization of the Fermi velocity [11].

The intraladder Hubbard repulsion U generates scat-
tering processes. Let us assume that 4kA

F is equal to a re-
ciprocal lattice vector. Thus umklapp process denoted by
g

(3)
AAAA will contribute to the interacting Hamiltonian. In

this case, intraladder processes denoted by g(i)
0 by Kishine

et al. [6] differ on whether the interacting electrons be-
long to the band A or B. Consequently we obtain nine
dimensionless coupling constants denoted by g

(3)
AAAA and

g
(i)
XY VW where i = 1, 2 and X , Y , V and W stand for A

and B [11]. g(1)
XY VW denote backward scattering whereas

g
(2)
XY VW denote forward scattering. We will consider the

case of isotropic spin coupling [9]. For simplicity we de-
note the g(i)

XY VW as follows g(i)
AAAA ≡ g

(i)
A , g(i)

BBBB ≡ g
(i)
B ,

g
(3)
AAAA ≡ g

(3)
A , g(1)

ABAB ≡ g
(1)
f , g(2)

ABBA ≡ g
(2)
f , g(i)

AABB ≡ g
(i)
t .

3 RG equations for two particle scattering

The interladder one particle hopping t⊥ and the coupling
constants generate two types of dimensional crossover: one
particle crossover and two particle crossover [6]. We use
the perturbative renormalization group theory (PRG) to
study the competition between the two kinds of dimen-
sional crossover.

To derive the scaling equations for the coupling con-
stants, the multiplicative renormalization group theory
(MRG) is used within the g-ology model [10]. In this the-
ory, it is assumed that when decreasing the cutoff E0 to
a value E′0 = E0e−l, the vertices and Green’s functions
get multiplied by factors that depend only on the cutoff
scale. We denote by dm the dimensionless Green’s func-
tion corresponding to the propagation in the band m. The
renormalized Green’s function d′m are given by [11]

d′m

(
ω

E′0
, g′
)

= zm

(
E′0
E0
, g

)
dm

(
ω

E0
, g

)
(3)

where g′ is the renormalized coupling constant.
The dimensionless vertex Γ (i)

XY VW satisfy the following
equation

Γ
′(i)
XY VW

(
ω

E′0
, g′
)

= [z(i)
XY VW ]−1Γ

(i)
XY VW

(
ω

E0
, g

)
,

i = 1, 2; X, Y, V, W = A, B (4)

whereas the renormalized coupling g′ are given by:

g
′(i)
XY VW = g

(i)
XY VW z

(i)
XY VW [zXzY zV zW ]−

1
2 (5)

the umklapp vertex Γ
(3)
A and the coupling constant g(3)

A
satisfy similar equations.

We can verify that the following quantity is invariant
under scaling transformation [10]

g
(i)
XY VWΓ

(i)
XY VW [dXdY dV dW ]

1
2 . (6)

Developing Γ (i)
XY VW and the Green’s functions to the first

order in Log ω
E0

and using the scaling invariant given in
equation (6), we can derive the scaling equations for the
coupling constants (given in Appendix A) and Green’s
functions. These equations are depicted in Figure 1. We
have performed numerical integration of the scaling equa-
tions. Starting with the following bare coupling

g
(3)
A = g(i)

µ = 0.3, µ = A, B, f, t; i = 1, 2 (7)

the scaling equations lead to

g
(1)∗
A = g

(1)∗
B = 0, g(2)∗

A = 0.5, g(3)∗
A = 1,

g
(i)∗
f = g

(i)∗
t = 0, i = 1, 2. (8)

In this case the umklapp process becomes relevant and
the isolated ladders scale to a phase where the two bands
are completely decoupled (g(i)∗

f = g
(i)∗
t = 0, i = 1, 2).

Therefore we could define the stiffness of the charge ex-
citation in the antibonding band in the same manner as
for a single chain that is KA

ρ =
√

(1 +G)/(1−G) where
G = g

(1)
A − 2g(2)

A . The fixed point is then characterized by
KA
ρ = 0 which means that a Mott gap opens in the charge

excitation spectrum of the A band.
However the bonding band and the spin excitation

spectrum of the antibonding band remain gapless. Con-
sequently the SDW channel in the A band becomes the
most dominant as will be shown in the next section.

Figure 2 represents the scaling flows for the bare cou-
pling mentioned above.

4 RG equations for one and two particle
hopping

In this section we consider that the ladders are weakly
coupled by one and two particle hopping processes and
we study the effect of such processes on the phase dia-
gram. The one particle hopping (two particle hopping)
takes place when a single particle (pair of particle) hops
from one ladder to a neighboring one as it is illustrated
in Figure 2 of reference [6]. As we have distinguished the
intrachain processes in A and B bands we should distin-
guish between hopping process in the A band, denoted by
t⊥A, and the one in the B band denoted t⊥B.

To derive the scaling equations for the one and the two
particle processes we have adopted the renormalization
group formulation of Bourbonnais and Caron [5] based
on Kadanoff-Wilson (WK) model. This approach was also
applied in the case of non half-filled ladder [6]. The mul-
tiplicative renormalization group (MRG) method used to
derive the renormalization group equations for the cou-
pling constants in Section 3 is enable to generate new rel-
evant couplings such as two particle hopping [5]. However
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Fig. 1. Diagrammatic representations of the scaling equations for interladder one particle propagator on the band A (a-1),

interladder one particle propagator on the band B (a-2), intraladder scattering vertices Γ
(i)
A , i = 1, 2 (b-1), intraladder scattering

vertices Γ
(i)
B , Γ

(i)
f , Γ

(i)
t , i = 1, 2, (b-2), intraladder scattering vertex Γ

(3)
A (b-3).

the WK renormalization group lead to the same renormal-
ization equations for the g(i)

µ as the MRG. We have used
these two methods for diversity. The details of derivation
of the one and two particle scaling processes exist already
in references [5,6].

The scaling equations for t⊥A and t⊥B are then given
by (Fig. 3):

d Log
∼
t⊥A

dl
= 1−

(
g

(1)2
A + g

(2)2
A − g(1)

A g
(2)
A + g

(1)2
f + g

(2)2
f

− g(1)
f g

(2)
f + g

(1)2
t + g

(2)2
t − g(1)

t g
(2)
t +

g
(3)2
A

2

)
(9)

d Log
∼
t⊥B

dl
= 1−

(
g

(1)2
B + g

(2)2
B − g(1)

B g
(2)
B + g

(1)2
f + g

(2)2
f

−g(1)
f g

(2)
f + g

(1)2
t + g

(2)2
t − g(1)

t g
(2)
t

)
(10)

where
∼
t⊥m (l) = t⊥m(l)

E0
.

The bare value
∼
t⊥m (0) ≡

∼
t⊥0 may be re-

garded as an applied pressure [6]. The bare cou-
pling and the fixed point given respectively by
equations (7, 8). In this case the one particle processes be-
come relevant and the interladder two particle processes

0.0 2.0 4.0 6.0 8.0 10.0
l=LogE0/E
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(2)
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(3)

Fig. 2. Scaling flows of the coupling constants for relevant
umklapp process.

are dominated by the intraband spin density wave channel
in the band A. In fact in the A band the Mott gap locks
the CDW and the superconducting channels whereas the
SDW channel, enhanced by the umklapp process, becomes
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Fig. 3. Diagrammatic representations of the scaling equations for the interladder one particle hopping in the band A,
∼
t⊥A,

(a-1) and in the band B,
∼
t⊥B, (a-2).

the most dominant. However in the bonding band, al-
though the spin and charge excitation modes remain gap-
less, the amplitudes of the different channels are negligible
compared to the amplitude of the SDW channel’s gener-
ator in the antibonding band denoted by V SDW

A . This is
due to the absence of umklapp process in the B band and
the weakness of the coupling constants to which the lad-
ders scale. The enhancement of the SDW correlation by
umklapp process was also found in the quasi-one dimen-
sional organic conductors (TMTSM)2X, (X = ClO4,PF6)
which may be regarded as coupled chains due to strong
anisotropy [12,13].

The scaling equation of the SDW generator V SDW
A in

the band A depend on the amplitude of the umklapp gen-
erator V um [4]. The scaling equations are given by:

dV SDW
A (l)

dl
= −1

4
∼
t

2

⊥A (g(2)2
A + 4g(3)2

A ) + g
(2)
A V SDW

A

+ 4g(3)
A V um − 1

2
[
(V SDW

A )2 + 4(V um)2
]

(11)
dV um(l)

dl
= −

∼
t

2

⊥A g
(2)
A g

(3)
A + 4

(
g

(2)
A V um + g

(3)
A V SDW

A

)
− 2V SDW

A V um. (12)

Henceforth we will denote V SDW
A by V SDW.

It is worth noting that in the case of irrelevant umk-
lapp process [14], the d-wave superconducting correlation
remains the most dominant as in the case of non half-filled
ladder [6] and there is no important change in the phase
diagram of reference [6].

We have solved numerically the scaling equations
(A1–A9, 9–12).

Figure 4 shows the scaling flows of
∼
t⊥m (l) and

V SDW(l) for
∼
t⊥0 = 0.04 and

∼
t⊥0 = 0.12.

As we can see
∼
t⊥A (l) grows much slowly than

∼
t⊥B (l)

which reminds us the case of half-filled chains [4] where
the growth of the interchain umklapp process reduces the
growth of

∼
t⊥.

For
∼
t⊥0 = 0.12,

∼
t⊥B (l) reaches unity before V SDW(l)

diverges. Thus the one particle crossover dominates the
two particle crossover. In this case the system crosses over
to a two dimensional phase.

However, for
∼
t⊥0 = 0.04, V SDW(l) diverges

before
∼
t⊥B (l) reaches unity, so a two particle crossover

takes place.
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Fig. 4. Scaling flows of
∼
t⊥A (l),

∼
t⊥B (l) (denoted by

∼
t⊥A and

∼
t⊥B resp.) and V SDW(l), for

∼
t⊥0 = 0.04 (a) and for

∼
t⊥0 =

0.12 (b).

In the same manner as in reference [6] we define a
crossover temperature

∼
T cross and the SDW temperature

∼
T SDW by

∼
T cross=

Tcross

E0
= e−lcross ,

∼
T SDW=

TSDW

E0
= e−lSDW (13)

where
∼
t⊥ (lcross) = 1 and V SDW(lSDW) = −∞.
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Fig. 5. Phase diagram of weakly coupled Hubbard ladder with
a half-filled band in presence of relevant umklapp process.

We should note that the value of
∼
T SDW and

∼
T cross are

disputable especially when lSDW or lcross are in the region
where the coupling constants reach their fixed point value.
In such case the system scales to a strong coupling region
where the RG treatment is no more reliable because it
is based on weak coupling assumption. However the RG
method provide a qualitative description of the behavior
of the system. A more accurate treatment may be the
bosonization method.

To obtain the phase diagram depicted in Figure 5, we
have integrated the scaling equations for different value of
∼
t⊥0 with the bare coupling already mentioned. We note
that there is a finite value

∼
t⊥c = 0.095 for

∼
t⊥ where a

dimensional crossover takes place.

For
∼
t⊥0 <

∼
t⊥c, and as the temperature decreases,

the system undergoes a phase transition, via two parti-
cle hopping, to the SDW phase at

∼
T SDW that increases

with increasing
∼
t⊥0 which may be regarded as an applied

pressure [4].
In this range of temperature and pressure the one par-

ticle hopping process is confined within the ladder and the
Mott localization inhibits the pair hopping process within
CDW and superconducting channels. The confinement of
the one particle hopping may results of the incoherence of
the interladder propagation rather than the irrelevance
of hopping process which remains relevant under scal-
ing [15]. We should however note that in the case of two
coupled chains with umklapp scattering it is found that
the interchain hopping becomes irrelevant which yields to
deconfinement-confinement transition [8].

For
∼
t⊥0 >

∼
t⊥c the one particle hopping process by-

passes the SDW correlation and the system crosses to the
two dimensional phase at

∼
T cross.

The dependence of
∼
t⊥c on the amplitude of the umk-

lapp process is depicted in Figure 6. We see that as the
umklapp scattering becomes important the SDW phase

0.0 0.5 1.0 1.5
gA

(3)
/gA

(1)

0.0

0.1

0.1

0.2

0.2

t pe
rp

 0
/E

0 2D

SDW

tperp c/E0

Fig. 6. Effect of relevant umklapp process on the critical value
∼
t⊥c for g

(i)
µ = 0.3, µ = A,B, f, t; i = 1, 2 (

∼
t⊥c and

∼
t⊥0 are

denoted by
∼
t⊥c /E0 and

∼
t⊥0 /E0 resp.).

gets wider and the one particle process is strongly sup-
pressed. This behavior is also found in the case of a system
of coupled half-filled chains [4].

The phase diagram shown in Figure 5 is reminiscent
of the one found in the case of quasi-one dimensional or-
ganic conductors (TMTTF)2X and (TMTSF)2X (Fig. 1
of Ref. [12]) if we disregard the spin Peierls phase which
is related to the lattice distortion. Therefore, a system of
two-leg Hubbard ladders with a half-filled band may be-
have as organic conductors. This may be confirmed by the
study of the two dimensional Fermi liquid phase (Fig. 5)
using the renormalization group approach for a two di-
mensional system as in reference [12] in order to seek the
dominant phase which may depend on the structure of
the Fermi surface and nesting conditions. Such study gets
over the scope of this paper.

This remark reflects the fact that ladder materials rep-
resent an intermediate situation between one and two di-
mensional systems and acting on the filling, doping etc.,
will tip up the ladder to the one or two dimensional be-
havior.

It is worth to note that isolated non half-filled chains
scale to a weak coupling Tomonaga-Luttinger gapless
phase and the interchain one particle process becomes rel-
evant. The coupling chains always undergo a crossover to a
two dimensional phase. However, half-filled isolated chains
scale to a phase where a Mott gap opens and in this case,
such as the case of the one half-filled band ladder dis-
cussed above, the crossover takes place at a finite value
of t⊥ below which the two particle process dominates the
one particle process although t⊥ is relevant under scaling.

5 Conclusion

In this paper we have studied weakly coupled two-leg
Hubbard ladders with a half-filled band. The ladders are
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weakly coupled via one particle hopping process t̃⊥0. We
have considered a model with a linear dispersion relation
near Fermi points. By means of the renormalization group
approach we have studied the effect of relevant umklapp
process on the dimensional crossover caused by one parti-
cle process. We have found that the isolated ladder scale
to a quasi-one dimensional Mott insulator where the SDW
correlation is the most dominant.

We have shown that a dimensional crossover between
spin density wave phase (SDW) and a two dimensional
Fermi liquid phase (2D) takes place at a finite value
∼
t⊥c that increases with increasing umklapp process which
makes the SDW phase wider.

For
∼
t⊥0 <

∼
t⊥c, a transition to the SDW phase takes

place whereas the one particle hopping process is found to
be confined within the ladder.

However for
∼
t⊥0 >

∼
t⊥c, the one particle process be-

comes the most relevant and a crossover to 2D phase oc-
curs.

It should be noted that this behavior is reminiscent of
the one found in the case of quasi-one dimensional organic
conductors. This may be confirmed by the properties of
the 2D phase which may be obtained within the renormal-
ization group theory applied to a two dimensional system.
This shows the relevance of ladder materials which will
permit to make the interpolation between one and two
dimensional systems and may be of great importance to
understand the behavior of high-Tc superconductors.

Compared to the case of half-filled chains, ladders with
a half-filled band and relevant umklapp process have the
same behavior. In both cases there is a Mott gap in the
charge excitation spectrum and the SDW correlation be-
comes the most dominant. The crossover form SDW phase
to the two dimensional phase takes place at finite value of
t⊥ although t⊥ remains relevant under scaling. However
in non half-filled chains, the system always undergoes a
phase transition to a two dimensional phase for any value
of t⊥ and under scaling t⊥ grows more rapidly than in the
case of half-filled chain.

Our study predicts the behavior of two-leg Hubbard
ladder system with a half-filled band under pressure. To
our knowledge an experimental realization of such mate-
rial does not exist yet. It is worth noting that we have not
treated the case of two-leg Hubbard ladder at half-filling
(where the two bands are half-filled) because such material
is an insulator [16], while in this paper we are interested
in doped ladder in order to understand their experimental
behavior [1].

We are grateful to J. Kishine, M. Héritier, C. Bourbonnais and
S. Kaddour for stimulating discussions. We acknowledge the
referee for interesting remarks. S. Haddad would like to thank
le Centre de Recherche en Physique du Solide à l’Université de
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Appendix A: RG equations of the coupling
constants

Using the invariant given in equation (6), we have de-
rived the RG equations of the coupling constants. These
equations are the following

dg(1)
A

d Log x
= 2g(1)2

A + 2g(1)
t g

(2)
t + 2g(1)

A

(
g

(1)2
A + g

(1)2
f + g

(1)2
t

)
− 2

(
g

(1)
A − g(1)

f

)
g

(2)
t

(
g

(1)
t − g

(2)
t

)
(A.1)

dg(2)
A

d Log x
= g

(1)2
A + g

(1)2
t + g

(2)2
t − g(3)2

A + g
(1)3
A + g

(1)
A g

(1)2
f

+ g
(1)
f g

(1)2
t − g(3)2

A

(
g

(1)
A − 2g(2)

A

)
+ 2

(
g

(2)
A − g(2)

f

)(
g

(1)2
t − g(1)

t g
(2)
t + g

(2)2
t

)
(A.2)

dg(1)
B

d Log x
= 2g(1)2

B + 2g(1)
t g

(2)
t + 2g(1)

B

(
g

(1)2
B + g

(1)2
f + g

(1)2
t

)
− 2(g(1)

B − g(1)
f )g(2)

t (g(1)
t − g

(2)
t ) (A.3)

dg(2)
B

d Log x
= g

(1)2
B + g

(1)2
t + g

(2)2
t + g

(1)3
B

+ g
(1)
B g

(1)2
f + g

(1)
f g

(1)2
t

+ 2
(
g

(2)
B − g(2)

f

)(
g

(1)2
t − g(1)

t g
(2)
t + g

(2)2
t

)
(A.4)

dg(1)
f

d Log x
= 2g(1)2

f + 2g(1)
t

(
g

(1)
t − g

(2)
t

)
+ g

(1)
f

×
(

2g(1)2
f + g

(1)2
A + g

(1)2
B + 2g(1)2

t +
1
2
g

(3)2
A

)
− 2g(1)

f g
(2)
t

(
g

(1)
t − g

(2)
t

)
+
(
g

(1)
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(1)
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)
g

(2)
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(
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(2)
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)
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with x = E′0/E0 = e−l.
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